home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-12 | 6.1 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 93 17 00 00 bb 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 31 2e 35 20 20 43 6f 6d |Section |1.5 Com|
|00000020| 70 6c 65 78 20 4e 75 6d | 62 65 72 73 0d 0b 00 46 |plex Num|bers...F|
|00000030| 6f 72 20 6d 6f 72 65 20 | 70 72 61 63 74 69 63 65 |or more |practice|
|00000040| 3a 0d 0a 00 0d 0a 00 20 | 20 20 20 20 10 31 2d 35 |:...... | .1-5|
|00000050| 2d 33 0e 78 31 2d 35 0e | 45 78 65 72 63 69 73 65 |-3.x1-5.|Exercise|
|00000060| 73 0f 0d 0a 00 20 20 20 | 20 20 10 31 2d 35 2d 32 |s.... | .1-5-2|
|00000070| 0e 65 31 2d 35 0e 47 75 | 69 64 65 64 20 45 78 65 |.e1-5.Gu|ided Exe|
|00000080| 72 63 69 73 65 73 0f 0d | 0a 00 0d 0a 00 54 6f 70 |rcises..|.....Top|
|00000090| 69 63 73 20 66 6f 72 20 | 65 78 70 6c 6f 72 61 74 |ics for |explorat|
|000000a0| 69 6f 6e 3a 0d 0a 00 0d | 0a 00 20 20 20 20 20 0e |ion:....|.. .|
|000000b0| 73 31 2d 35 2d 31 0e 44 | 65 66 69 6e 69 74 69 6f |s1-5-1.D|efinitio|
|000000c0| 6e 20 6f 66 20 61 20 43 | 6f 6d 70 6c 65 78 20 4e |n of a C|omplex N|
|000000d0| 75 6d 62 65 72 0f 0d 0a | 00 20 20 20 20 20 0e 73 |umber...|. .s|
|000000e0| 31 2d 35 2d 32 0e 41 64 | 64 69 74 69 6f 6e 20 61 |1-5-2.Ad|dition a|
|000000f0| 6e 64 20 53 75 62 74 72 | 61 63 74 69 6f 6e 20 6f |nd Subtr|action o|
|00000100| 66 20 43 6f 6d 70 6c 65 | 78 20 4e 75 6d 62 65 72 |f Comple|x Number|
|00000110| 73 0f 0d 0a 00 20 20 20 | 20 20 0e 73 31 2d 35 2d |s.... | .s1-5-|
|00000120| 33 0e 4d 75 6c 74 69 70 | 6c 79 69 6e 67 20 43 6f |3.Multip|lying Co|
|00000130| 6d 70 6c 65 78 20 4e 75 | 6d 62 65 72 73 0f 0d 0a |mplex Nu|mbers...|
|00000140| 00 20 20 20 20 20 0e 73 | 31 2d 35 2d 34 0e 43 6f |. .s|1-5-4.Co|
|00000150| 6d 70 6c 65 78 20 43 6f | 6e 6a 75 67 61 74 65 73 |mplex Co|njugates|
|00000160| 20 61 6e 64 20 44 69 76 | 69 73 69 6f 6e 20 62 79 | and Div|ision by|
|00000170| 20 43 6f 6d 70 6c 65 78 | 20 4e 75 6d 62 65 72 73 | Complex| Numbers|
|00000180| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 31 2d 35 2d 35 |.... | .s1-5-5|
|00000190| 0e 50 72 69 6e 63 69 70 | 61 6c 20 53 71 75 61 72 |.Princip|al Squar|
|000001a0| 65 20 52 6f 6f 74 20 6f | 66 20 61 20 4e 65 67 61 |e Root o|f a Nega|
|000001b0| 74 69 76 65 20 4e 75 6d | 62 65 72 0f 0d 0a 00 20 |tive Num|ber.... |
|000001c0| 20 20 20 20 0e 73 31 2d | 35 2d 36 0e 54 68 65 20 | .s1-|5-6.The |
|000001d0| 50 6f 77 65 72 73 20 6f | 66 20 11 33 69 11 31 0f |Powers o|f .3i.1.|
|000001e0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 31 2e 35 20 20 |...Secti|on 1.5 |
|000001f0| 43 6f 6d 70 6c 65 78 20 | 4e 75 6d 62 65 72 73 0d |Complex |Numbers.|
|00000200| 0b 00 52 65 63 61 6c 6c | 20 74 68 61 74 20 74 68 |..Recall| that th|
|00000210| 65 20 73 6f 6c 75 74 69 | 6f 6e 20 6f 66 20 61 6e |e soluti|on of an|
|00000220| 20 61 6c 67 65 62 72 61 | 69 63 20 65 71 75 61 74 | algebra|ic equat|
|00000230| 69 6f 6e 20 64 65 70 65 | 6e 64 73 20 75 70 6f 6e |ion depe|nds upon|
|00000240| 20 74 68 65 20 73 65 74 | 20 6f 66 20 0d 0a 00 6e | the set| of ...n|
|00000250| 75 6d 62 65 72 73 20 77 | 65 20 61 72 65 20 63 6f |umbers w|e are co|
|00000260| 6e 73 69 64 65 72 69 6e | 67 2e 20 20 57 65 20 68 |nsiderin|g. We h|
|00000270| 61 76 65 20 64 65 76 65 | 6c 6f 70 65 64 20 73 65 |ave deve|loped se|
|00000280| 76 65 72 61 6c 20 74 65 | 63 68 6e 69 71 75 65 73 |veral te|chniques|
|00000290| 20 66 6f 72 20 73 6f 6c | 76 69 6e 67 20 0d 0a 00 | for sol|ving ...|
|000002a0| 61 6c 67 65 62 72 61 69 | 63 20 65 71 75 61 74 69 |algebrai|c equati|
|000002b0| 6f 6e 73 2c 20 62 75 74 | 20 77 65 20 63 61 6e 6e |ons, but| we cann|
|000002c0| 6f 74 20 79 65 74 20 73 | 6f 6c 76 65 20 61 6e 20 |ot yet s|olve an |
|000002d0| 65 71 75 61 74 69 6f 6e | 20 61 73 20 73 69 6d 70 |equation| as simp|
|000002e0| 6c 65 20 61 73 0d 0a 00 | 20 20 20 20 20 20 11 32 |le as...| .2|
|000002f0| 32 0d 0b 00 20 20 20 20 | 20 11 33 78 20 20 11 31 |2... | .3x .1|
|00000300| 3d 20 2d 34 2e 0d 0a 00 | 20 20 20 20 20 20 20 20 |= -4....| |
|00000310| 20 20 20 20 20 11 34 44 | 32 32 0d 0b 00 11 31 62 | .4D|22....1b|
|00000320| 65 63 61 75 73 65 20 11 | 33 78 20 11 31 3d 20 11 |ecause .|3x .1= .|
|00000330| 34 53 20 11 31 2d 34 20 | 69 73 20 6e 6f 74 20 61 |4S .1-4 |is not a|
|00000340| 20 72 65 61 6c 20 6e 75 | 6d 62 65 72 2e 20 20 49 | real nu|mber. I|
|00000350| 74 20 74 75 72 6e 73 20 | 6f 75 74 20 74 68 61 74 |t turns |out that|
|00000360| 20 62 79 20 69 6e 74 72 | 6f 64 75 63 69 6e 67 20 | by intr|oducing |
|00000370| 61 20 0d 0a 00 73 69 6e | 67 6c 65 20 6e 65 77 20 |a ...sin|gle new |
|00000380| 6e 75 6d 62 65 72 2c 20 | 63 61 6c 6c 65 64 20 74 |number, |called t|
|00000390| 68 65 20 12 31 69 6d 61 | 67 69 6e 61 72 79 20 75 |he .1ima|ginary u|
|000003a0| 6e 69 74 20 11 33 69 11 | 31 12 30 2c 0d 0a 00 20 |nit .3i.|1.0,... |
|000003b0| 20 20 20 20 20 20 20 20 | 20 11 34 44 32 32 0d 0b | | .4D22..|
|000003c0| 00 20 20 20 20 20 11 33 | 69 20 11 31 3d 20 11 34 |. .3|i .1= .4|
|000003d0| 53 20 11 31 2d 31 2c 0d | 0a 00 0d 0b 00 77 65 20 |S .1-1,.|.....we |
|000003e0| 63 61 6e 20 63 72 65 61 | 74 65 20 61 6e 20 65 78 |can crea|te an ex|
|000003f0| 70 61 6e 64 65 64 20 73 | 65 74 20 6f 66 20 6e 75 |panded s|et of nu|
|00000400| 6d 62 65 72 73 20 74 68 | 61 74 20 77 69 6c 6c 20 |mbers th|at will |
|00000410| 61 6c 6c 6f 77 20 75 73 | 20 74 6f 20 73 6f 6c 76 |allow us| to solv|
|00000420| 65 20 61 6e 79 20 0d 0a | 00 71 75 61 64 72 61 74 |e any ..|.quadrat|
|00000430| 69 63 20 65 71 75 61 74 | 69 6f 6e 2e 20 20 54 68 |ic equat|ion. Th|
|00000440| 65 20 6e 65 77 20 73 65 | 74 20 69 73 20 63 61 6c |e new se|t is cal|
|00000450| 6c 65 64 20 74 68 65 20 | 73 65 74 20 6f 66 20 12 |led the |set of .|
|00000460| 31 63 6f 6d 70 6c 65 78 | 20 6e 75 6d 62 65 72 73 |1complex| numbers|
|00000470| 12 30 20 61 6e 64 20 0d | 0a 00 65 61 63 68 20 6e |.0 and .|..each n|
|00000480| 75 6d 62 65 72 20 69 6e | 20 74 68 69 73 20 73 65 |umber in| this se|
|00000490| 74 20 63 61 6e 20 62 65 | 20 77 72 69 74 74 65 6e |t can be| written|
|000004a0| 20 69 6e 20 74 68 65 20 | 66 6f 72 6d 20 11 33 61 | in the |form .3a|
|000004b0| 20 2b 20 62 69 11 31 2c | 20 77 68 65 72 65 20 11 | + bi.1,| where .|
|000004c0| 33 61 20 11 31 61 6e 64 | 20 11 33 62 20 11 31 61 |3a .1and| .3b .1a|
|000004d0| 72 65 20 0d 0a 00 72 65 | 61 6c 20 6e 75 6d 62 65 |re ...re|al numbe|
|000004e0| 72 73 2e 20 20 54 68 65 | 20 73 65 74 20 6f 66 20 |rs. The| set of |
|000004f0| 72 65 61 6c 20 6e 75 6d | 62 65 72 73 20 69 73 20 |real num|bers is |
|00000500| 61 20 73 75 62 73 65 74 | 20 6f 66 20 74 68 65 20 |a subset| of the |
|00000510| 73 65 74 20 6f 66 20 63 | 6f 6d 70 6c 65 78 20 0d |set of c|omplex .|
|00000520| 0a 00 6e 75 6d 62 65 72 | 73 20 62 65 63 61 75 73 |..number|s becaus|
|00000530| 65 20 65 76 65 72 79 20 | 72 65 61 6c 20 6e 75 6d |e every |real num|
|00000540| 62 65 72 20 11 33 61 20 | 11 31 63 61 6e 20 62 65 |ber .3a |.1can be|
|00000550| 20 77 72 69 74 74 65 6e | 20 69 6e 20 74 68 65 20 | written| in the |
|00000560| 66 6f 72 6d 20 11 33 61 | 20 11 31 2b 20 30 11 33 |form .3a| .1+ 0.3|
|00000570| 69 11 31 2e 20 20 54 77 | 6f 20 0d 0a 00 63 6f 6d |i.1. Tw|o ...com|
|00000580| 70 6c 65 78 20 6e 75 6d | 62 65 72 73 20 11 33 61 |plex num|bers .3a|
|00000590| 20 2b 20 62 69 20 11 31 | 61 6e 64 20 11 33 63 20 | + bi .1|and .3c |
|000005a0| 2b 20 64 69 20 11 31 61 | 72 65 20 12 31 65 71 75 |+ di .1a|re .1equ|
|000005b0| 61 6c 12 30 20 69 66 20 | 61 6e 64 20 6f 6e 6c 79 |al.0 if |and only|
|000005c0| 20 69 66 20 11 33 61 20 | 3d 20 63 20 11 31 61 6e | if .3a |= c .1an|
|000005d0| 64 20 0d 0a 00 11 33 62 | 20 3d 20 64 11 31 2e 0d |d ....3b| = d.1..|
|000005e0| 0a 00 53 65 63 74 69 6f | 6e 20 31 2e 35 20 20 43 |..Sectio|n 1.5 C|
|000005f0| 6f 6d 70 6c 65 78 20 4e | 75 6d 62 65 72 73 0d 0b |omplex N|umbers..|
|00000600| 00 54 6f 20 12 31 61 64 | 64 20 28 6f 72 20 73 75 |.To .1ad|d (or su|
|00000610| 62 74 72 61 63 74 29 20 | 74 77 6f 20 63 6f 6d 70 |btract) |two comp|
|00000620| 6c 65 78 20 6e 75 6d 62 | 65 72 73 12 30 2c 20 77 |lex numb|ers.0, w|
|00000630| 65 20 61 64 64 20 28 6f | 72 20 73 75 62 74 72 61 |e add (o|r subtra|
|00000640| 63 74 29 20 74 68 65 20 | 72 65 61 6c 20 61 6e 64 |ct) the |real and|
|00000650| 20 0d 0a 00 69 6d 61 67 | 69 6e 61 72 79 20 70 61 | ...imag|inary pa|
|00000660| 72 74 73 20 6f 66 20 74 | 68 65 20 6e 75 6d 62 65 |rts of t|he numbe|
|00000670| 72 73 20 73 65 70 61 72 | 61 74 65 6c 79 2e 20 20 |rs separ|ately. |
|00000680| 49 66 20 11 33 61 20 2b | 20 62 69 20 11 31 61 6e |If .3a +| bi .1an|
|00000690| 64 20 11 33 63 20 2b 20 | 64 69 20 11 31 61 72 65 |d .3c + |di .1are|
|000006a0| 20 74 77 6f 20 0d 0a 00 | 63 6f 6d 70 6c 65 78 20 | two ...|complex |
|000006b0| 6e 75 6d 62 65 72 73 20 | 77 72 69 74 74 65 6e 20 |numbers |written |
|000006c0| 69 6e 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |in stand|ard form|
|000006d0| 2c 20 74 68 65 6e 20 74 | 68 65 69 72 20 73 75 6d |, then t|heir sum|
|000006e0| 20 61 6e 64 20 64 69 66 | 66 65 72 65 6e 63 65 20 | and dif|ference |
|000006f0| 61 72 65 20 0d 0a 00 64 | 65 66 69 6e 65 64 20 61 |are ...d|efined a|
|00000700| 73 20 66 6f 6c 6c 6f 77 | 73 2e 0d 0a 00 0d 0b 00 |s follow|s.......|
|00000710| 20 20 20 20 20 20 20 20 | 20 20 20 20 53 75 6d 3a | | Sum:|
|00000720| 20 20 11 33 28 61 20 2b | 20 62 69 29 20 2b 20 28 | .3(a +| bi) + (|
|00000730| 63 20 2b 20 64 69 29 20 | 3d 20 28 61 20 2b 20 63 |c + di) |= (a + c|
|00000740| 29 20 2b 20 28 62 20 2b | 20 64 29 69 0d 0a 00 0d |) + (b +| d)i....|
|00000750| 0b 00 20 20 20 20 20 11 | 31 44 69 66 66 65 72 65 |.. .|1Differe|
|00000760| 6e 63 65 3a 20 20 11 33 | 28 61 20 2b 20 62 69 29 |nce: .3|(a + bi)|
|00000770| 20 2d 20 28 63 20 2b 20 | 64 69 29 20 3d 20 28 61 | - (c + |di) = (a|
|00000780| 20 2d 20 63 29 20 2b 20 | 28 62 20 2d 20 64 29 69 | - c) + |(b - d)i|
|00000790| 0d 0a 00 0d 0b 00 11 31 | 54 68 65 20 12 31 61 64 |.......1|The .1ad|
|000007a0| 64 69 74 69 76 65 20 69 | 64 65 6e 74 69 74 79 12 |ditive i|dentity.|
|000007b0| 30 20 69 6e 20 74 68 65 | 20 63 6f 6d 70 6c 65 78 |0 in the| complex|
|000007c0| 20 6e 75 6d 62 65 72 20 | 73 79 73 74 65 6d 20 69 | number |system i|
|000007d0| 73 20 7a 65 72 6f 20 28 | 6a 75 73 74 20 61 73 20 |s zero (|just as |
|000007e0| 69 6e 20 74 68 65 20 0d | 0a 00 72 65 61 6c 20 6e |in the .|..real n|
|000007f0| 75 6d 62 65 72 20 73 79 | 73 74 65 6d 29 2e 0d 0a |umber sy|stem)...|
|00000800| 00 0d 0b 00 46 75 72 74 | 68 65 72 6d 6f 72 65 2c |....Furt|hermore,|
|00000810| 20 74 68 65 20 12 31 61 | 64 64 69 74 69 76 65 20 | the .1a|dditive |
|00000820| 69 6e 76 65 72 73 65 12 | 30 20 6f 66 20 74 68 65 |inverse.|0 of the|
|00000830| 20 63 6f 6d 70 6c 65 78 | 20 6e 75 6d 62 65 72 20 | complex| number |
|00000840| 11 33 61 20 2b 20 62 69 | 20 11 31 69 73 20 0d 0a |.3a + bi| .1is ..|
|00000850| 00 0d 0b 00 20 20 20 20 | 20 11 33 2d 28 61 20 2b |.... | .3-(a +|
|00000860| 20 62 69 29 20 3d 20 2d | 61 20 2d 20 62 69 2e 0d | bi) = -|a - bi..|
|00000870| 0a 00 0d 0b 00 11 31 57 | 65 20 63 61 6e 20 76 65 |......1W|e can ve|
|00000880| 72 69 66 79 20 74 68 69 | 73 20 62 79 20 6e 6f 74 |rify thi|s by not|
|00000890| 69 6e 67 20 74 68 61 74 | 20 11 33 28 61 20 2b 20 |ing that| .3(a + |
|000008a0| 62 69 29 20 2b 20 28 2d | 61 20 2d 20 62 69 29 20 |bi) + (-|a - bi) |
|000008b0| 3d 20 30 20 2b 20 30 69 | 20 11 31 3d 20 30 2e 0d |= 0 + 0i| .1= 0..|
|000008c0| 0a 00 53 65 63 74 69 6f | 6e 20 31 2e 35 20 20 43 |..Sectio|n 1.5 C|
|000008d0| 6f 6d 70 6c 65 78 20 4e | 75 6d 62 65 72 73 0d 0b |omplex N|umbers..|
|000008e0| 00 4d 61 6e 79 20 6f 66 | 20 74 68 65 20 70 72 6f |.Many of| the pro|
|000008f0| 70 65 72 74 69 65 73 20 | 6f 66 20 72 65 61 6c 20 |perties |of real |
|00000900| 6e 75 6d 62 65 72 73 20 | 61 72 65 20 76 61 6c 69 |numbers |are vali|
|00000910| 64 20 66 6f 72 20 63 6f | 6d 70 6c 65 78 20 6e 75 |d for co|mplex nu|
|00000920| 6d 62 65 72 73 20 61 73 | 20 77 65 6c 6c 2e 20 20 |mbers as| well. |
|00000930| 0d 0a 00 57 65 20 63 61 | 6e 20 75 73 65 20 74 68 |...We ca|n use th|
|00000940| 65 73 65 20 70 72 6f 70 | 65 72 74 69 65 73 20 74 |ese prop|erties t|
|00000950| 6f 20 66 69 6e 64 20 74 | 68 65 20 12 31 70 72 6f |o find t|he .1pro|
|00000960| 64 75 63 74 20 6f 66 20 | 74 77 6f 20 63 6f 6d 70 |duct of |two comp|
|00000970| 6c 65 78 20 6e 75 6d 62 | 65 72 73 12 30 20 61 73 |lex numb|ers.0 as|
|00000980| 20 0d 0a 00 66 6f 6c 6c | 6f 77 73 2e 0d 0a 00 0d | ...foll|ows.....|
|00000990| 0b 00 20 20 20 20 20 11 | 33 28 61 20 2b 20 62 69 |.. .|3(a + bi|
|000009a0| 29 28 63 20 2b 20 64 69 | 29 20 3d 20 61 28 63 20 |)(c + di|) = a(c |
|000009b0| 2b 20 64 69 29 20 2b 20 | 62 69 28 63 20 2b 20 64 |+ di) + |bi(c + d|
|000009c0| 69 29 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 |i) | .2.|
|000009d0| 31 44 69 73 74 72 69 62 | 75 74 69 76 65 12 30 0d |1Distrib|utive.0.|
|000009e0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000009f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a10| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|00000a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00000a30| 3d 20 61 63 20 2b 20 28 | 61 64 29 69 20 2b 20 28 |= ac + (|ad)i + (|
|00000a40| 62 63 29 69 20 2b 20 28 | 62 64 29 69 20 20 20 20 |bc)i + (|bd)i |
|00000a50| 20 20 20 11 32 12 31 44 | 69 73 74 72 69 62 75 74 | .2.1D|istribut|
|00000a60| 69 76 65 12 30 0d 0a 00 | 0d 0b 00 20 20 20 20 20 |ive.0...|... |
|00000a70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a80| 20 11 33 3d 20 61 63 20 | 2b 20 28 61 64 29 69 20 | .3= ac |+ (ad)i |
|00000a90| 2b 20 28 62 63 29 69 20 | 2b 20 28 62 64 29 28 2d |+ (bc)i |+ (bd)(-|
|00000aa0| 31 29 20 20 20 20 11 32 | 12 31 44 65 66 69 6e 69 |1) .2|.1Defini|
|00000ab0| 74 69 6f 6e 20 6f 66 20 | 69 12 30 0d 0a 00 0d 0b |tion of |i.0.....|
|00000ac0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000ad0| 20 20 20 20 20 20 20 11 | 33 3d 20 61 63 20 2d 20 | .|3= ac - |
|00000ae0| 62 64 20 2b 20 28 61 64 | 29 69 20 2b 20 28 62 63 |bd + (ad|)i + (bc|
|00000af0| 29 69 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 |)i | .2.1|
|00000b00| 43 6f 6d 6d 75 74 61 74 | 69 76 65 12 30 0d 0a 00 |Commutat|ive.0...|
|00000b10| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000b20| 20 20 20 20 20 20 20 20 | 20 11 33 3d 20 28 61 63 | | .3= (ac|
|00000b30| 20 2d 20 62 64 29 20 2b | 20 28 61 64 20 2b 20 62 | - bd) +| (ad + b|
|00000b40| 63 29 69 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |c)i | .2|
|00000b50| 12 31 41 73 73 6f 63 69 | 61 74 69 76 65 12 30 0d |.1Associ|ative.0.|
|00000b60| 0a 00 0d 0b 00 11 31 52 | 61 74 68 65 72 20 74 68 |......1R|ather th|
|00000b70| 61 6e 20 74 72 79 69 6e | 67 20 74 6f 20 6d 65 6d |an tryin|g to mem|
|00000b80| 6f 72 69 7a 65 20 74 68 | 69 73 20 6d 75 6c 74 69 |orize th|is multi|
|00000b90| 70 6c 69 63 61 74 69 6f | 6e 20 72 75 6c 65 2c 20 |plicatio|n rule, |
|00000ba0| 6a 75 73 74 20 74 72 79 | 20 74 6f 20 72 65 6d 65 |just try| to reme|
|00000bb0| 6d 62 65 72 0d 0a 00 68 | 6f 77 20 74 68 65 20 64 |mber...h|ow the d|
|00000bc0| 69 73 74 72 69 62 75 74 | 69 76 65 20 70 72 6f 70 |istribut|ive prop|
|00000bd0| 65 72 74 79 20 69 73 20 | 75 73 65 64 20 74 6f 20 |erty is |used to |
|00000be0| 6d 75 6c 74 69 70 6c 79 | 20 74 77 6f 20 63 6f 6d |multiply| two com|
|00000bf0| 70 6c 65 78 20 6e 75 6d | 62 65 72 73 2e 20 20 54 |plex num|bers. T|
|00000c00| 68 65 0d 0a 00 70 72 6f | 63 65 64 75 72 65 20 69 |he...pro|cedure i|
|00000c10| 73 20 73 69 6d 69 6c 61 | 72 20 74 6f 20 6d 75 6c |s simila|r to mul|
|00000c20| 74 69 70 6c 79 69 6e 67 | 20 74 77 6f 20 70 6f 6c |tiplying| two pol|
|00000c30| 79 6e 6f 6d 69 61 6c 73 | 20 61 6e 64 20 63 6f 6d |ynomials| and com|
|00000c40| 62 69 6e 69 6e 67 20 6c | 69 6b 65 20 74 65 72 6d |bining l|ike term|
|00000c50| 73 0d 0a 00 61 73 20 69 | 6e 20 74 68 65 20 46 4f |s...as i|n the FO|
|00000c60| 49 4c 20 6d 65 74 68 6f | 64 2e 0d 0a 00 53 65 63 |IL metho|d....Sec|
|00000c70| 74 69 6f 6e 20 31 2e 35 | 20 20 43 6f 6d 70 6c 65 |tion 1.5| Comple|
|00000c80| 78 20 4e 75 6d 62 65 72 | 73 0d 0b 00 54 68 65 20 |x Number|s...The |
|00000c90| 6e 75 6d 62 65 72 73 20 | 11 33 61 20 2b 20 62 69 |numbers |.3a + bi|
|00000ca0| 20 11 31 61 6e 64 20 11 | 33 61 20 2d 20 62 69 20 | .1and .|3a - bi |
|00000cb0| 11 31 61 72 65 20 72 65 | 66 65 72 72 65 64 20 74 |.1are re|ferred t|
|00000cc0| 6f 20 61 73 20 12 31 63 | 6f 6d 70 6c 65 78 20 63 |o as .1c|omplex c|
|00000cd0| 6f 6e 6a 75 67 61 74 65 | 73 12 30 2e 20 20 54 68 |onjugate|s.0. Th|
|00000ce0| 65 69 72 0d 0a 00 6f 6e | 6c 79 20 64 69 66 66 65 |eir...on|ly diffe|
|00000cf0| 72 65 6e 63 65 20 69 73 | 20 74 68 65 20 73 69 67 |rence is| the sig|
|00000d00| 6e 20 62 65 74 77 65 65 | 6e 20 74 68 65 20 72 65 |n betwee|n the re|
|00000d10| 61 6c 20 61 6e 64 20 69 | 6d 61 67 69 6e 61 72 79 |al and i|maginary|
|00000d20| 20 70 61 72 74 73 2e 20 | 20 59 6f 75 20 6d 61 79 | parts. | You may|
|00000d30| 20 62 65 0d 0a 00 73 75 | 72 70 72 69 73 65 64 20 | be...su|rprised |
|00000d40| 74 6f 20 6c 65 61 72 6e | 20 74 68 61 74 20 77 68 |to learn| that wh|
|00000d50| 65 6e 20 63 6f 6d 70 6c | 65 78 20 63 6f 6e 6a 75 |en compl|ex conju|
|00000d60| 67 61 74 65 73 20 61 72 | 65 20 6d 75 6c 74 69 70 |gates ar|e multip|
|00000d70| 6c 69 65 64 20 74 6f 67 | 65 74 68 65 72 2c 20 61 |lied tog|ether, a|
|00000d80| 20 0d 0a 00 72 65 61 6c | 20 6e 75 6d 62 65 72 20 | ...real| number |
|00000d90| 69 73 20 74 68 65 20 72 | 65 73 75 6c 74 2e 0d 0a |is the r|esult...|
|00000da0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000db0| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 20 20 20 | | .22 |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 32 20 32 | | 2 2|
|00000dd0| 20 20 20 20 32 20 20 20 | 20 32 20 20 20 20 20 20 | 2 | 2 |
|00000de0| 20 20 32 20 20 20 20 32 | 0d 0b 00 20 20 20 20 20 | 2 2|... |
|00000df0| 11 33 28 61 20 2b 20 62 | 69 29 28 61 20 2d 20 62 |.3(a + b|i)(a - b|
|00000e00| 69 29 20 3d 20 61 20 20 | 2d 20 61 62 69 20 2b 20 |i) = a |- abi + |
|00000e10| 61 62 69 20 2d 20 62 20 | 69 20 20 3d 20 61 20 20 |abi - b |i = a |
|00000e20| 2d 20 62 20 28 2d 31 29 | 20 3d 20 61 20 20 2b 20 |- b (-1)| = a + |
|00000e30| 62 0d 0a 00 0d 0b 00 11 | 31 57 65 20 63 61 6e 20 |b.......|1We can |
|00000e40| 75 73 65 20 63 6f 6d 70 | 6c 65 78 20 63 6f 6e 6a |use comp|lex conj|
|00000e50| 75 67 61 74 65 73 20 74 | 6f 20 12 31 64 69 76 69 |ugates t|o .1divi|
|00000e60| 64 65 20 62 79 20 61 20 | 63 6f 6d 70 6c 65 78 20 |de by a |complex |
|00000e70| 6e 75 6d 62 65 72 12 30 | 2e 20 20 54 6f 20 66 69 |number.0|. To fi|
|00000e80| 6e 64 20 74 68 65 20 0d | 0a 00 71 75 6f 74 69 65 |nd the .|..quotie|
|00000e90| 6e 74 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 11 33 |nt......| .3|
|00000ea0| 61 20 2b 20 62 69 0d 0b | 00 20 20 20 20 20 20 11 |a + bi..|. .|
|00000eb0| 34 32 32 32 32 32 32 20 | 11 31 2c 20 20 11 33 63 |4222222 |.1, .3c|
|00000ec0| 20 11 31 61 6e 64 20 11 | 33 64 20 11 31 6e 6f 74 | .1and .|3d .1not|
|00000ed0| 20 62 6f 74 68 20 7a 65 | 72 6f 0d 0b 00 20 20 20 | both ze|ro... |
|00000ee0| 20 20 20 11 33 63 20 2b | 20 64 69 0d 0a 00 0d 0b | .3c +| di.....|
|00000ef0| 00 11 31 77 65 20 6d 75 | 6c 74 69 70 6c 79 20 74 |..1we mu|ltiply t|
|00000f00| 68 65 20 6e 75 6d 65 72 | 61 74 6f 72 20 61 6e 64 |he numer|ator and|
|00000f10| 20 64 65 6e 6f 6d 69 6e | 61 74 6f 72 20 62 79 20 | denomin|ator by |
|00000f20| 74 68 65 20 63 6f 6e 6a | 75 67 61 74 65 20 6f 66 |the conj|ugate of|
|00000f30| 20 74 68 65 20 64 65 6e | 6f 6d 69 6e 61 74 6f 72 | the den|ominator|
|00000f40| 20 0d 0a 00 74 6f 20 6f | 62 74 61 69 6e 0d 0a 00 | ...to o|btain...|
|00000f50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f60| 20 20 20 20 11 34 28 20 | 20 20 20 20 20 29 0d 0b | .4( | )..|
|00000f70| 00 20 20 20 20 20 11 33 | 61 20 2b 20 62 69 20 20 |. .3|a + bi |
|00000f80| 20 61 20 2b 20 62 69 11 | 34 21 11 33 63 20 2d 20 | a + bi.|4!.3c - |
|00000f90| 64 69 11 34 21 20 20 20 | 11 33 28 61 63 20 2b 20 |di.4! |.3(ac + |
|00000fa0| 62 64 29 20 2b 20 28 62 | 63 20 2d 20 61 64 29 69 |bd) + (b|c - ad)i|
|00000fb0| 0d 0b 00 20 20 20 20 20 | 11 34 32 32 32 32 32 32 |... |.4222222|
|00000fc0| 20 11 33 3d 20 11 34 32 | 32 32 32 32 32 21 32 32 | .3= .42|22222!22|
|00000fd0| 32 32 32 32 21 20 11 33 | 3d 20 11 34 32 32 32 32 |2222! .3|= .42222|
|00000fe0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000ff0| 32 32 20 11 31 2e 0d 0b | 00 20 20 20 20 20 11 33 |22 .1...|. .3|
|00001000| 63 20 2b 20 64 69 20 20 | 20 63 20 2b 20 64 69 11 |c + di | c + di.|
|00001010| 34 21 11 33 63 20 2d 20 | 64 69 11 34 21 20 20 20 |4!.3c - |di.4! |
|00001020| 20 20 20 20 20 20 20 20 | 11 32 32 20 20 20 20 32 | |.22 2|
|00001030| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001040| 20 20 20 20 20 20 20 11 | 34 39 20 20 20 20 20 20 | .|49 |
|00001050| 30 20 20 20 20 20 20 20 | 20 20 20 11 33 63 20 20 |0 | .3c |
|00001060| 2b 20 64 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |+ d | |
|00001070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001090| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000010a0| 31 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 31 2e 35 |1....Sec|tion 1.5|
|000010b0| 20 20 43 6f 6d 70 6c 65 | 78 20 4e 75 6d 62 65 72 | Comple|x Number|
|000010c0| 73 0d 0b 00 49 66 20 11 | 33 61 20 11 31 69 73 20 |s...If .|3a .1is |
|000010d0| 61 20 70 6f 73 69 74 69 | 76 65 20 6e 75 6d 62 65 |a positi|ve numbe|
|000010e0| 72 2c 20 74 68 65 6e 20 | 74 68 65 20 12 31 70 72 |r, then |the .1pr|
|000010f0| 69 6e 63 69 70 61 6c 20 | 73 71 75 61 72 65 20 72 |incipal |square r|
|00001100| 6f 6f 74 12 30 20 6f 66 | 20 74 68 65 20 6e 65 67 |oot.0 of| the neg|
|00001110| 61 74 69 76 65 0d 0a 00 | 6e 75 6d 62 65 72 20 2d |ative...|number -|
|00001120| 11 33 61 20 11 31 69 73 | 20 64 65 66 69 6e 65 64 |.3a .1is| defined|
|00001130| 20 61 73 20 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | as ... | |
|00001140| 20 20 11 34 44 32 32 20 | 20 20 20 44 32 20 20 44 | .4D22 | D2 D|
|00001150| 32 32 20 20 20 20 44 32 | 0d 0b 00 20 20 20 20 20 |22 D2|... |
|00001160| 20 20 20 20 20 53 20 11 | 33 2d 61 20 11 31 3d 20 | S .|3-a .1= |
|00001170| 11 34 53 20 11 33 61 20 | 11 34 53 20 11 31 2d 31 |.4S .3a |.4S .1-1|
|00001180| 20 3d 20 11 34 53 20 11 | 33 61 20 69 11 31 2e 0d | = .4S .|3a i.1..|
|00001190| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000011a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 44 32 | | .4D2|
|000011c0| 32 20 20 20 20 44 32 20 | 20 44 32 0d 0b 00 11 31 |2 D2 | D2....1|
|000011d0| 49 6e 20 74 68 69 73 20 | 64 65 66 69 6e 69 74 69 |In this |definiti|
|000011e0| 6f 6e 20 77 65 20 61 72 | 65 20 75 73 69 6e 67 20 |on we ar|e using |
|000011f0| 74 68 65 20 72 75 6c 65 | 20 11 34 53 20 11 33 61 |the rule| .4S .3a|
|00001200| 62 20 11 31 3d 20 11 34 | 53 20 11 33 61 20 11 34 |b .1= .4|S .3a .4|
|00001210| 53 20 11 33 62 11 31 2c | 20 66 6f 72 20 11 33 61 |S .3b.1,| for .3a|
|00001220| 20 11 31 3e 20 30 20 61 | 6e 64 20 11 33 62 20 11 | .1> 0 a|nd .3b .|
|00001230| 31 3c 20 30 2e 0d 0a 00 | 49 74 20 69 73 20 69 6d |1< 0....|It is im|
|00001240| 70 6f 72 74 61 6e 74 20 | 74 6f 20 6e 6f 74 65 20 |portant |to note |
|00001250| 74 68 61 74 20 74 68 69 | 73 20 72 75 6c 65 20 69 |that thi|s rule i|
|00001260| 73 20 6e 6f 74 20 76 61 | 6c 69 64 20 69 66 20 62 |s not va|lid if b|
|00001270| 6f 74 68 20 11 33 61 20 | 11 31 61 6e 64 20 11 33 |oth .3a |.1and .3|
|00001280| 62 20 11 31 61 72 65 20 | 0d 0a 00 6e 65 67 61 74 |b .1are |...negat|
|00001290| 69 76 65 2e 0d 0a 00 0d | 0b 00 46 6f 72 20 65 78 |ive.....|..For ex|
|000012a0| 61 6d 70 6c 65 2c 20 0d | 0a 00 20 20 20 20 20 20 |ample, .|.. |
|000012b0| 20 20 20 20 20 11 34 44 | 32 32 20 20 44 32 32 20 | .4D|22 D22 |
|000012c0| 20 20 28 20 44 32 20 29 | 28 20 44 32 20 29 20 20 | ( D2 )|( D2 ) |
|000012d0| 20 20 20 11 32 32 0d 0b | 00 20 20 20 20 20 20 20 | .22..|. |
|000012e0| 20 20 20 11 34 53 20 11 | 31 2d 33 20 11 34 53 20 | .4S .|1-3 .4S |
|000012f0| 11 31 2d 33 20 3d 20 11 | 34 21 53 20 11 31 33 11 |.1-3 = .|4!S .13.|
|00001300| 33 69 11 34 21 21 53 20 | 11 31 33 11 33 69 11 34 |3i.4!!S |.13.3i.4|
|00001310| 21 20 11 31 3d 20 33 11 | 33 69 20 20 11 31 3d 20 |! .1= 3.|3i .1= |
|00001320| 2d 33 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |-3... | |
|00001330| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 39 20 20 | | .49 |
|00001340| 20 20 30 39 20 20 20 20 | 30 0d 0a 00 11 31 77 68 | 09 |0....1wh|
|00001350| 65 72 65 61 73 0d 0b 00 | 20 20 20 20 20 20 20 20 |ereas...| |
|00001360| 20 20 11 34 44 32 32 32 | 32 32 32 32 32 20 20 20 | .4D222|22222 |
|00001370| 20 44 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 53 | D2... | S|
|00001380| 20 11 31 28 2d 33 29 28 | 2d 33 29 20 3d 20 11 34 | .1(-3)(|-3) = .4|
|00001390| 53 20 11 31 39 20 3d 20 | 33 2e 0d 0a 00 0d 0b 00 |S .19 = |3.......|
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000013b0| 34 44 32 32 32 32 32 32 | 32 32 20 20 20 20 44 32 |4D222222|22 D2|
|000013c0| 32 20 20 44 32 32 0d 0b | 00 11 31 43 6f 6e 73 65 |2 D22..|..1Conse|
|000013d0| 71 75 65 6e 74 6c 79 2c | 20 11 34 53 20 11 31 28 |quently,| .4S .1(|
|000013e0| 2d 33 29 28 2d 33 29 20 | 11 34 3d 20 53 20 11 31 |-3)(-3) |.4= S .1|
|000013f0| 2d 33 20 11 34 53 20 11 | 31 2d 33 2e 0d 0a 00 0d |-3 .4S .|1-3.....|
|00001400| 0b 00 42 65 63 61 75 73 | 65 20 6f 66 20 74 68 69 |..Becaus|e of thi|
|00001410| 73 20 72 65 73 75 6c 74 | 2c 20 77 68 65 6e 20 77 |s result|, when w|
|00001420| 6f 72 6b 69 6e 67 20 77 | 69 74 68 20 73 71 75 61 |orking w|ith squa|
|00001430| 72 65 20 72 6f 6f 74 73 | 20 6f 66 20 6e 65 67 61 |re roots| of nega|
|00001440| 74 69 76 65 20 6e 75 6d | 62 65 72 73 2c 20 62 65 |tive num|bers, be|
|00001450| 0d 0a 00 73 75 72 65 20 | 74 6f 20 63 6f 6e 76 65 |...sure |to conve|
|00001460| 72 74 20 74 6f 20 73 74 | 61 6e 64 61 72 64 20 66 |rt to st|andard f|
|00001470| 6f 72 6d 20 11 33 62 65 | 66 6f 72 65 20 11 31 6d |orm .3be|fore .1m|
|00001480| 75 6c 74 69 70 6c 79 69 | 6e 67 2e 20 20 0d 0a 00 |ultiplyi|ng. ...|
|00001490| 53 65 63 74 69 6f 6e 20 | 31 2e 35 20 20 43 6f 6d |Section |1.5 Com|
|000014a0| 70 6c 65 78 20 4e 75 6d | 62 65 72 73 0d 0b 00 57 |plex Num|bers...W|
|000014b0| 68 65 6e 20 77 6f 72 6b | 69 6e 67 20 77 69 74 68 |hen work|ing with|
|000014c0| 20 70 6f 6c 79 6e 6f 6d | 69 61 6c 73 20 6f 66 20 | polynom|ials of |
|000014d0| 64 65 67 72 65 65 20 68 | 69 67 68 65 72 20 74 68 |degree h|igher th|
|000014e0| 61 6e 20 32 2c 20 77 65 | 20 6f 63 63 61 73 69 6f |an 2, we| occasio|
|000014f0| 6e 61 6c 6c 79 20 6e 65 | 65 64 20 0d 0a 00 74 6f |nally ne|ed ...to|
|00001500| 20 65 76 61 6c 75 61 74 | 65 20 68 69 67 68 65 72 | evaluat|e higher|
|00001510| 20 12 31 70 6f 77 65 72 | 73 20 6f 66 20 11 33 69 | .1power|s of .3i|
|00001520| 11 31 12 30 2e 20 20 50 | 6f 77 65 72 73 20 6f 66 |.1.0. P|owers of|
|00001530| 20 11 33 69 20 11 31 66 | 6f 72 6d 20 61 20 70 61 | .3i .1f|orm a pa|
|00001540| 74 74 65 72 6e 20 74 68 | 61 74 20 72 65 70 65 61 |ttern th|at repea|
|00001550| 74 73 20 0d 0a 00 69 74 | 73 65 6c 66 20 61 66 74 |ts ...it|self aft|
|00001560| 65 72 20 65 76 65 72 79 | 20 66 6f 75 72 74 68 20 |er every| fourth |
|00001570| 70 6f 77 65 72 2e 0d 0a | 00 20 20 20 20 20 20 11 |power...|. .|
|00001580| 32 31 0d 0b 00 20 20 20 | 20 20 11 33 69 20 20 3d |21... | .3i =|
|00001590| 20 69 0d 0a 00 20 20 20 | 20 20 20 11 32 32 0d 0b | i... | .22..|
|000015a0| 00 20 20 20 20 20 11 33 | 69 20 20 3d 20 2d 31 0d |. .3|i = -1.|
|000015b0| 0a 00 20 20 20 20 20 20 | 11 32 33 20 20 20 20 32 |.. |.23 2|
|000015c0| 0d 0b 00 20 20 20 20 20 | 11 33 69 20 20 3d 20 69 |... |.3i = i|
|000015d0| 20 20 11 34 2a 20 11 33 | 69 20 3d 20 2d 69 0d 0a | .4* .3|i = -i..|
|000015e0| 00 20 20 20 20 20 20 11 | 32 34 20 20 20 20 32 20 |. .|24 2 |
|000015f0| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 11 33 69 20 | 2... | .3i |
|00001600| 20 3d 20 69 20 20 11 34 | 2a 20 11 33 69 20 20 3d | = i .4|* .3i =|
|00001610| 20 28 2d 31 29 28 2d 31 | 29 20 3d 20 31 0d 0a 00 | (-1)(-1|) = 1...|
|00001620| 20 20 20 20 20 20 11 32 | 35 20 20 20 20 34 0d 0b | .2|5 4..|
|00001630| 00 20 20 20 20 20 11 33 | 69 20 20 3d 20 69 20 20 |. .3|i = i |
|00001640| 11 34 2a 20 11 33 69 20 | 3d 20 69 2e 0d 0a 00 20 |.4* .3i |= i.... |
|00001650| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 6e 0d 0b | | .2n..|
|00001660| 00 11 31 54 6f 20 63 6f | 6d 70 75 74 65 20 11 33 |..1To co|mpute .3|
|00001670| 69 20 20 11 31 66 6f 72 | 20 61 6e 79 20 70 6f 77 |i .1for| any pow|
|00001680| 65 72 20 6f 66 20 11 33 | 6e 11 31 2c 20 77 65 20 |er of .3|n.1, we |
|00001690| 73 69 6d 70 6c 79 20 66 | 61 63 74 6f 72 20 6f 75 |simply f|actor ou|
|000016a0| 74 20 74 68 65 20 6d 75 | 6c 74 69 70 6c 65 73 20 |t the mu|ltiples |
|000016b0| 6f 66 20 34 20 69 6e 20 | 0d 0a 00 74 68 65 20 65 |of 4 in |...the e|
|000016c0| 78 70 6f 6e 65 6e 74 20 | 61 6e 64 20 63 6f 6d 70 |xponent |and comp|
|000016d0| 75 74 65 20 74 68 65 20 | 72 65 6d 61 69 6e 69 6e |ute the |remainin|
|000016e0| 67 20 70 6f 72 74 69 6f | 6e 2e 20 20 46 6f 72 20 |g portio|n. For |
|000016f0| 65 78 61 6d 70 6c 65 2c | 0d 0a 00 20 20 20 20 20 |example,|... |
|00001700| 20 11 32 31 35 20 20 20 | 20 31 32 20 20 20 20 33 | .215 | 12 3|
|00001710| 20 20 20 20 20 34 20 33 | 20 20 20 20 33 20 20 20 | 4 3| 3 |
|00001720| 20 20 20 33 0d 0b 00 20 | 20 20 20 20 11 33 69 20 | 3... | .3i |
|00001730| 20 20 11 31 3d 20 11 33 | 69 20 20 20 11 34 2a 20 | .1= .3|i .4* |
|00001740| 11 33 69 20 20 3d 20 28 | 69 20 29 20 20 11 34 2a |.3i = (|i ) .4*|
|00001750| 20 11 33 69 20 20 3d 20 | 28 31 29 20 28 2d 69 29 | .3i = |(1) (-i)|
|00001760| 20 3d 20 2d 69 11 31 2e | 20 20 20 20 20 20 20 20 | = -i.1.| |
|00001770| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001780| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 2e | | .|
|00001790| 0d 0a 00 2c 00 00 00 b7 | 01 00 00 4d 1c 00 00 10 |...,....|...M....|
|000017a0| 00 00 00 00 00 00 00 73 | 31 2d 35 00 ff 01 00 00 |.......s|1-5.....|
|000017b0| e3 03 00 00 4d 1c 00 00 | e3 01 00 00 00 00 00 00 |....M...|........|
|000017c0| 73 31 2d 35 2d 31 00 fe | 05 00 00 c4 02 00 00 4d |s1-5-1..|.......M|
|000017d0| 1c 00 00 e2 05 00 00 00 | 00 00 00 73 31 2d 35 2d |........|...s1-5-|
|000017e0| 32 00 de 08 00 00 8f 03 | 00 00 4d 1c 00 00 c2 08 |2.......|..M.....|
|000017f0| 00 00 00 00 00 00 73 31 | 2d 35 2d 33 00 89 0c 00 |......s1|-5-3....|
|00001800| 00 1c 04 00 00 4d 1c 00 | 00 6d 0c 00 00 00 00 00 |.....M..|.m......|
|00001810| 00 73 31 2d 35 2d 34 00 | c1 10 00 00 cf 03 00 00 |.s1-5-4.|........|
|00001820| 4d 1c 00 00 a5 10 00 00 | 00 00 00 00 73 31 2d 35 |M.......|....s1-5|
|00001830| 2d 35 00 ac 14 00 00 e7 | 02 00 00 4d 1c 00 00 90 |-5......|...M....|
|00001840| 14 00 00 00 00 00 00 73 | 31 2d 35 2d 36 00 |.......s|1-5-6. |
+--------+-------------------------+-------------------------+--------+--------+